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Gene Ontology Analysis of GWA Study Data Sets
Provides Insights into the Biology of Bipolar Disorder

Peter Holmans,1,* Elaine K. Green,1 Jaspreet Singh Pahwa,1 Manuel A.R. Ferreira,2,3,4,6,7,8

Shaun M. Purcell,2,3,4,6,7 Pamela Sklar,2,3,4,5,6,7 The Wellcome Trust Case-Control Consortium,9

Michael J. Owen,1 Michael C. O’Donovan,1 and Nick Craddock1

We present a method for testing overrepresentation of biological pathways, indexed by gene-ontology terms, in lists of significant SNPs

from genome-wide association studies. This method corrects for linkage disequilibrium between SNPs, variable gene size, and multiple

testing of nonindependent pathways. The method was applied to the Wellcome Trust Case-Control Consortium Crohn disease (CD) data

set. At a general level, the biological basis of CD is relatively well known for a complex genetic trait, and it thus acted as a test of the

method. The method, known as ALIGATOR (Association LIst Go AnnoTatOR), successfully detected biological pathways implicated

in CD. The method was also applied to a meta-analysis of bipolar disorder, and it implicated the modulation of transcription and cellular

activity, including that which occurs via hormonal action, as an important player in pathogenesis.
Introduction

Genome-wide association (GWA) analysis can be a power-

ful method for identifying genes involved in complex

disorders, which often arise from the interplay of multiple

genetic and environmental risk factors.1

The GWA approach has proven to be successful in iden-

tifying susceptibility genes for several complex disorders2–4

on the basis of identification and replication of associated

SNPs. It seems intuitively likely that susceptibility alleles

for any given disorder are not randomly distributed among

genes but, instead, are distributed among one (or more)

set(s) of genes whose functions are to some extent related.

Under such a model, although a number of SNPs would be

expected to show modest association when analyzed in

isolation, one would expect to see an overall excess of

SNPs with moderate p values for association on a list of

SNPs representing a set of genes from relevant related bio-

logical pathways.

Several methods exist for prioritizing gene pathways for

involvement in disease susceptibility, based on functional

annotation,5 gene-expression data,6 sequence features,7

protein-protein interactions,8 or a combination of multiple

types of data.9 Recently, pathway-based approaches have

been developed for application to the results of genome-

wide linkage10 and association11 studies.

This paper presents a novel method, called ALIGATOR

(Association LIst Go AnnoTatOR), for studying groups of

genes by testing for overrepresentation of members of

those groups within lists of genes containing significantly

associated SNPs from GWA studies. The aim is to identify

whether certain groups of genes are potentially disease
causing. To illustrate the application of the method, we

defined groups on the basis of membership in Gene

Ontology (GO) database categories, though the approach

is applicable to any other gene-membership classification

system. Compared with single-locus analysis, group or

pathway analysis may yield more secure insights into

disease biology, because an associated pathway is likely

to implicate function better than a hit in a single gene

that may have many functional possibilities. Additionally,

genetic heterogeneity may cause any one causal variant to

exhibit only modest disease risk in the sample as a whole,

because different individuals may possess different disease-

risk alleles at different loci in the same gene or in different

genes. This will reduce the power to detect any one variant

by traditional association methods. However, if the genes

in question are members of the same biological pathway,

then considering the pathway as the unit of analysis may

increase the power to detect association between the genes

and disease. For similar reasons, association of disease with

biological pathways may be easier to replicate across

different studies than association to individual SNPs or

genes. This approach can be regarded as complementary

to the studies that focus on the top hits.

In our method, we define a list of significant SNPs,

applying an arbitrary threshold of significance to the

GWA study, and test for overrepresentation of categories

of genes, defined by GO terms (henceforth referred to as

GO categories) on this list. Our analysis method corrects

for the presence of linkage disequilibrium (LD) between

SNPs, variable gene size, overlapping genes, and multiple

nonindependent GO categories. It can be applied to data

from any GWA platform.
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We apply our approach to the Wellcome Trust Case-

Control Consortium (WTCCC) Crohn disease (CD) GWA

data set. At a general level, the biological basis of CD is rela-

tively well known for a complex genetic trait, so it can be

regarded as a proof-of-principle test of the method. In addi-

tion, we apply our method to a meta-analysis of bipolar

disorder (BD) GWA study data sets (including the WTCCC

data set), for which imputed data are available. This en-

ables us to investigate the improvements provided by

a larger sample size and the increased gene coverage given

by the imputed data.

Material and Methods

GO Categories
The GO database12 assigns biological descriptors (GO terms) to

genes on the basis of the properties of their encoded products.

These terms fall into three types: cellular component, biological

process, and molecular function. Genes assigned the same GO

term can thus be regarded as members of a category (‘‘GO cate-

gory’’) of genes that are more closely related in terms of some

aspect of their biology than are random sets of genes. Rather

than restricting analysis to categories at an arbitrarily defined level

in the GO hierarchy, we chose to analyze all GO categories con-

taining at least three genes.

SNP ID and Chromosomal Location
The ‘‘dbSNP chromosome report’’ file, based on human genome

assembly build 36.2, was downloaded from the NCBI ftp site for

chromosomes 1–22 and X. From this file, the following three

data fields were extracted for reference sequence entries only: rs#

(SNP rs number), chr (chromosome), and chr pos (chromosome

position).

Assigning SNPs to Genes and Gene Regions
The ‘‘seq-gene’’ file was downloaded from the NCBI ftp website.

First, for the exclusion of pseudogenes, records with a ‘‘feature_id’’

of ‘‘pseudo’’ were removed. All records with a ‘‘feature_type’’ of

‘‘gene,’’ ‘‘group_label’’ of ‘‘reference,’’ and ‘‘tax_id’’ of ‘‘9606’’

(i.e., human) were extracted. The following four fields were re-

tained: chromosome, chr_start, chr_stop, and feature_id (NCBI

gene ID).

The extracted SNP ID and chromosomal location file was

compared to this file, first by chromosome and second by position.

Output files were generated, containing SNP rs numbers and the

gene region(s) in which those SNPs lie. We generated two such

output files. The first comprised SNPs assigned to genes on the

basis of being located within the genomic sequence corresponding

to the start of the first and the end of the last exon. For the second,

we added SNPs within 20 kb of the 50 and 30 ends of the first and

last exons, respectively. The choice of 20 kb has been used by us

elsewhere for candidate gene analysis13 to capture proximal regu-

latory and other functional regions that may lie outside, but close

to, the gene. If a SNP was found to be located within more than

one gene or gene region, all entries were included.

Assigning GO Terms to Genes and Gene Regions
Subsequently, the GO categories associated with these genes were

obtained by linking the gene Locus ID to GO categories with the
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use of the gene2go file available as part of the NCBI Entrez Gene

database. More information on the gene2go file can be obtained

from the readme file (see Web Resources). The gene2go file was

generated with data from the Gene Ontology Annotation (GOA)

database.14

This file gives a list of genes (indexed by EntrezGene ID) and GO

categories of which each gene is a member. For each GO category

listed in gene2go, the complete set of categories of which that cate-

gory is a subset was obtained by recursive examination of the

ontology file from the AmiGO website.

This set of categories was added to those already present in gen-

e2go, producing a complete list of GO category memberships for

each gene.

Platform SNP Lists
We used NCBI SNP lists based upon build 36.2. The annotations of

SNPs present on the genotyping platforms were updated as neces-

sary. Newly assigned SNP rs ID numbers were obtained with the

NCBI SNP batch entry list (see Web Resources).

Statistical Analysis Method
The presence of LD between SNPs complicates analysis, as does

variable gene size and number of SNPs per gene. We chose to prese-

lect a p value criterion to define a list of significantly associated

SNPs. These SNPs define a list of significantly associated genes,

each gene counted only once regardless of the number of signifi-

cantly associated SNPs that it contains. The number of signifi-

cantly associated genes in each GO category can be counted. Anal-

ysis was restricted to categories containing at least two significant

genes, in order to prevent small categories appearing to be signif-

icantly overrepresented on the basis of one (possibly chance) hit.

This approach is simple, and it can be applied regardless of the LD

relationships between the SNPs. However, the number of signifi-

cantly associated genes in each category will not follow a standard

distribution (such as the hypergeometric distribution), because

the probability that a gene appears on the list will depend on

the number of (effectively independent) SNPs that it contains. The

more (effectively independent) SNPs that a gene contains, the

more likely that at least one SNP, and therefore that gene, will be

considered ‘‘significant.’’ Therefore, the significance of the

number of significantly associated genes in each category was as-

sessed by simulations, as follows: SNPs were drawn successively

at random from the set of all SNPs used in the study, and the genes

that contained that particular SNP were added to the list of signif-

icant genes. The process was repeated until the list of significant

genes was the same length as that in the original study. Five

thousand replicate gene lists were generated in this way,

enabling empirical p values to be calculated for the number

of significantly associated genes in each GO category (i.e., the

proportion of replicate gene lists containing at least as many

genes from that GO category as the original list). This proce-

dure implicitly assumes that the level of LD between SNPs is

approximately equal across GO categories; violations of that

assumption will lead to test statistics that are overconservative

for categories in which the average LD between SNPs within

member genes is higher than the genome-wide average. This

is because in contrast to the real data set, under the simulation

procedure, the probability of selecting a gene to the list by

chance is proportional to the number of SNPs in that gene,

not the effective number of independent SNPs15 that the

gene contains. For genes with several SNPs in high LD, the
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effective number of independent SNPs is much smaller than

the total number of SNPs, so the probability that they are

selected to the simulated gene lists is inflated relative to the

actual data set, thereby reducing the significance of observing

them on the original list. Ideally, one would like to perform

replicates of the GWA study by permuting disease status, rank

the SNPs from each replicate study in order of significance,

and use these to generate gene lists. However, as noted,11 this

is computationally intensive. Furthermore, permutation requires

access to the individual genotype data, which may not always

be available.

Correction for Multiple Testing
In an experiment of this nature, several GO categories will gener-

ally be tested simultaneously. It is therefore desirable to correct the

individual category-specific p values for the number of categories

being tested. Because the categories are not independent, standard

methods, such as the Bonferroni and Sidak corrections, are inap-

propriate, as is the use of false discovery rate (FDR) procedures.

We corrected for multiple testing by using a bootstrap approach.

One of the 5000 replicate gene lists was selected at random to be

the ‘‘observed data.’’ A sample of 5000 gene lists for assessing

significance was generated by random sampling with replacement

(thus, lists could be counted once, more than once, or not at all)

from the remaining gene lists. p values for the number of signifi-

cantly associated genes in each GO category in the ‘‘observed

data’’ were calculated as before. This procedure was repeated

1000 times. Each p value from the original data can thus be cor-

rected for testing multiple categories, the corrected p value being

the proportion of bootstrap replicates for which the minimum

p value across all categories is less than or equal to the category-

specific p value from the original data. The ‘‘expected number of

hits’’ for each category can be calculated as the average number

of categories per bootstrap replicate with p values less than or

equal to the (uncorrected) p value from the original data. Finally,

the number of categories with p values less than a given value

Figure 1. Flow Diagram Showing the
Procedure for Estimating Statistical
Significance

(0.05, 0.01, 0.001) in the original data

can be compared with the corresponding

values from the bootstrap replicates. An

excess of significantly overrepresented

GO categories suggests a nonrandom

distribution of associations and thus

provides support for a biological basis for

the disease. A flow diagram of the method

used for assessing statistical significance is

given in Figure 1.

Application to Data
As a ‘‘proof of principle,’’ the method was

applied to the results of the WTCCC CD

case-control study, which, for a complex

disease, is relatively well characterized

and is thus a reasonable test of the effec-

tiveness of the method. The method was

also applied to the data from a meta-anal-

ysis of BD genome scans. BD is a disorder whose biological back-

ground is not well characterized, so the results of the analysis are

of considerable interest.

The summary statistics for the CD study were downloaded from

the WTCCC website. These data were produced from an analysis

of 1748 cases versus 2953 controls, based upon the Affymetrix

500K Chip. After quality control procedures, the WTCCC retained

genotypes on 469,557 SNPs (for more details, see the WTCCC

article2), of which 181,961 lay within genes, covering 14,653

genes and 4685 GO categories. A total of 246,929 SNPs lay within

20 kb of a gene, covering 22,253 genes and 5177 GO categories.

Extending the region within which a SNP is considered to map

to a gene considerably increases the coverage of genes, although

it is unknown a priori whether this increases or decreases the ratio

of signal to noise. SNPs were defined as ‘‘significantly associated’’ if

the Armitage Trend test had a p value of 1 3 10�4 or less. This is the

criterion used by the WTCCC to define the SNPs of interest that

were listed in their Supplemental Data. Less stringent criteria of

p < 0.001 and p < 0.005 were also explored. These criteria were

met by 308, 1226, and 3905 SNPs lying within 74, 253, and 833

genes, respectively. As mentioned previously, GO categories con-

taining only one significant gene were not counted as overrepre-

sented, because a single chance association in a small GO category

could result in that category having false evidence of overrepresen-

tation.

Data were also analyzed from a meta-analysis of the WTCCC BD

sample together with BD samples from the United States (STEP-BD

collection), University College London, and the Universities of

Edinburgh and Dublin,16 consisting of a total of 4387 cases and

6209 controls. There were 325,690 SNPs genotyped in common

between the samples and met quality control thresholds in each

of the studies. Of these, 123,840 lay within genes, covering

13,204 genes and 4487 GO categories. Data were imputed for

HapMap SNPs (for details, see Ferreira et al.16), giving a total set

of 1,769,948 SNPs. Of these, 679,901 lay within a total of 17,249

genes and 4877 GO categories. Not surprisingly, imputed SNP

data greatly enhanced gene coverage as compared to array
The American Journal of Human Genetics 85, 13–24, July 10, 2009 15



Table 1. Number of Significantly Overrepresented GO Categories: CD Data Set

p < 0.05 p < 0.01 p < 0.001

p Value Criterion for
SNPs No. of Top SNPs No. of Genes No. of Categories p Value No. of Categories p Value No. of Categories p Value

0.0001 308 74 55 0.091 32 0.009 17 0.001

0.001 1226 253 72 0.275 35 0.018 7 0.054

0.005 3905 833 124 0.151 35 0.088 9 0.032

Number of GO categories reaching various levels of significance for overrepresentation on the list of significant SNPs in the WTCCC CD data set and their corre-
sponding genes, together with p values indicating whether this number is significantly greater than that expected by chance. Only categories containing two or
more significant genes are counted. SNPs assigned to genes if they lie within that gene. Genotyped SNPs only.
genotypes alone, so these data were chosen for the main analysis

presented in this paper. There were 593, 3759, and 15,979 SNPs

that were significant at p < 1 3 10�4, p < 0.001, and p < 0.005,

lying within 50 genes, 296 genes, and 1036 genes, respectively.

Analysis of CD with the LD-Pruned SNP Set
An LD-pruned SNP set was obtained for the WTCCC CD data set as

follows: At each step, the SNP with the most significant p value

was selected, and all SNPs within 1 Mb with r2 > 0.2 were removed

(both criteria that we accept are arbitrary). Then, the most signif-

icant of the remaining SNPs was selected, and the process was

repeated until no pair of SNPs within 1 Mb of each other and

with r2 > 0.2 remained. This left 61,246 SNPs within genes,

covering 12,899 genes (compared to 14,653 covered by the

complete SNP list). The number of SNPs with p < 0.0001, p <

0.001, or p < 0.005 in each category was counted (counting

multiple significant SNPs in the same gene separately), as was

the total number of significant SNPs overall. Replicate lists of

significant SNPs of the same length as the original list were gener-

ated by randomly sampling SNPs (assuming independence). The

numbers of significant SNPs in each GO category in each replicate

list were obtained, and these were used to obtain category-specific

p values for overrepresentation. The same bootstrap technique as

that described in the main manuscript was used for assessing

whether there was an excess of significantly overrepresented cate-

gories.

This method counts multiple hits from the same gene, which

may increase power. However, there is also the question of where

to set the r2 cutoff for defining pairs of SNPs in LD—low values will

result in a sparse map of SNPs, which may lose power as a result of

reduced gene coverage, whereas if higher values are used, multiple

signals in a gene may have considerable interdependence due to

LD. This would result in false positives if the signals are analyzed

under the assumption that the markers are independent.

Results

The number of categories reaching uncorrected category-

specific significance levels of 0.05, 0.01, and 0.001 for over-

representation in the WTCCC CD data set, when analysis

was restricted to SNPs lying within genes, is shown in

Table 1. We also tested whether the total number of over-

represented categories was significantly in excess as com-

pared with the null expectation. For CD, the significance

of the excess of overrepresented categories increased with

the stringency of the significance criterion defining over-

representation. The significance of the number of overrep-
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resented categories also increased as the p value cutoff for

defining significant SNPs became more stringent. This

suggests that associations for CD are concentrated in a rela-

tively small number of categories, each of which shows

strong evidence of overrepresentation.

The most significant individual categories, with a cutoff

of p < 1 3 10�4 used for defining significant SNPs, are

shown in Table 2, and complete category-specific results

are presented in Table S1 (available online). We also

present (as expected hits per study) the number of cate-

gories expected by chance to have a category-specific

p value at least as significant as that of the test category,

thus giving a measure of significance allowing for multiple

testing of categories. Note that, for categories with a cate-

gory-specific p value of 0, a smaller value of expected hits

per study may be obtained by simulating more than

5000 replicate gene lists.

The overrepresented categories for CD include those

related to the major histocompatibility complex (MHC),

immunological response, and antigen processing. The in-

volvement of MHC in the genetic etiology of CD is well

known.17,18 Likewise, immunological response and antigen

processing are well-established features of this disease.19

Although these results are not novel, they provide a proof

of principle of the effectiveness of the method. The list of

categories for CD also contains several relating to ubiquiti-

nation, one of the two major intracellular protein-degrada-

tion systems—the other being autophagy (a catabolic

process that involves delivery of cellular components to

the lysosome for degradation). GWA studies have already

implicated autophagy as an important functional pathway

involved in CD,20 although we did not find exidence for

overrepresentation of GO categories involving autophagy

here. There are seven genes with SNPs significant at p <

1 3 10�4 in one or moreof the fourubiquitinationcategories

shown in Table 3 (GO: 6511, 6512, 4221, and 4383): CYLD

(MIM 605018), USP4 (MIM 603486), RNF123, CUL2 (MIM

603135), KLHL20, USP7 (MIM 602519), and FAF1 (MIM

604460). CYLD is approximately 90 kb from NOD2

(MIM 605956), and its apparent association could be due

to LD with NOD2. USP4 and RNF123 are in the previously

published 3p21 locus.21 A nonsynonymous SNP in MST1

(MIM 142408) has been postulated as responsible for the

association at this locus.22 However, neither USP4 nor
09



Table 2. Top 30 Overrepresented GO Categories: CD Data Set

GO Category Type

Total
Genes
in Category

No. of
Genes
on List

Expected No.
of Genes on List p Value

Expected
Hits per Study Function

GO02504 PROCESS 11 2 0.02 0.0000 0.32 antigen processing and presentation of
peptide or polysaccharide antigen via MHC
class II

GO32395 FUNCTION 9 2 0.01 0.0000 0.32 MHC class II receptor activity

GO42613 CELLULAR 10 2 0.02 0.0000 0.32 MHC class II protein complex

GO06955 PROCESS 365 7 1.21 0.0002 0.54 immunological response

GO42611 CELLULAR 20 2 0.03 0.0002 0.54 MHC protein complex

GO51184 FUNCTION 9 2 0.04 0.0004 0.77 cofactor transporter activity

GO51181 PROCESS 8 2 0.02 0.0004 0.77 cofactor transport

GO51183 FUNCTION 8 2 0.03 0.0004 0.77 vitamin transporter activity

GO15226 FUNCTION 3 2 0.02 0.0004 0.77 carnitine transporter activity

GO15879 PROCESS 3 2 0.02 0.0004 0.77 carnitine transport

GO02376 PROCESS 492 8 1.95 0.0006 0.98 immune system process

GO06511 PROCESS 143 5 0.59 0.0006 0.98 ubiquitin-dependent protein catabolic
process

GO19941 PROCESS 143 5 0.59 0.0006 0.98 modification-dependent protein catabolic
process

GO43632 PROCESS 143 5 0.59 0.0006 0.98 modification-dependent macromolecule
catabolic process

GO51603 PROCESS 144 5 0.59 0.0006 0.98 proteolysis involved in cellular protein
catabolic process

GO44257 PROCESS 146 5 0.6 0.0006 0.98 cellular protein catabolic process

GO19882 PROCESS 34 2 0.07 0.0010 1.41 antigen processing and presentation

GO30163 PROCESS 178 5 0.71 0.0012 1.6 protein catabolic process

GO04221 FUNCTION 53 3 0.18 0.0012 1.6 ubiquitin thiolesterase activity

GO04843 FUNCTION 56 3 0.19 0.0012 1.6 ubiquitin-specific protease activity

GO19783 FUNCTION 57 3 0.19 0.0012 1.6 small conjugating protein-specific protease
activity

GO44265 PROCESS 244 5 0.91 0.0014 1.79 cellular macromolecule catabolic process

GO51180 PROCESS 11 2 0.06 0.0014 1.79 vitamin transport

GO16790 FUNCTION 66 3 0.22 0.0018 2.14 thiolester hydrolase activity

GO43285 PROCESS 241 5 0.9 0.0024 2.73 biopolymer catabolic process

GO07249 PROCESS 31 2 0.08 0.0028 3.11 I-kappaB kinase/NF-kappaB cascade

GO09057 PROCESS 292 5 1.06 0.0038 3.95 macromolecule catabolic process

GO06952 PROCESS 324 5 1.17 0.0044 4.42 defense response

GO06512 PROCESS 384 6 1.6 0.0048 4.73 ubiquitin cycle

GO44248 PROCESS 440 6 1.64 0.0054 5.19 cellular catabolic process

List of 30 most significantly overrepresented GO categories for CD (cutoff for significant SNPs: p < 1 3 10�4). The type of category and the expected number of
categories with a category-specific overrepresentation p value at least as significant as that observed in the absence of any true overrepresentation are also shown.
RNF123 were genotyped, so their association with CD risk

cannot be definitively excluded. CUL2 is in a ‘‘newly identi-

fied’’ locus on chromosome 10p11 showing convincing

evidence for association in a large meta-analysis of GWA

data.21 FAF1 (TNFRSF6 associated factor) is a particularly

interesting candidate for involvement in CD susceptibility,
Th
because it shows evidence of association in both the

WTCCC study2 (p ¼ 1.6 3 10�5) and the meta-analysis21

(p¼ 1 3 10�4). Furthermore, it is well established as a nega-

tive regulatorof NFkappaB, which is a key player in the path-

ogenesis of CD. There is also prior evidence linking ubiqui-

tination with CD.23,24 Thus, the role of ubiquitination in
e American Journal of Human Genetics 85, 13–24, July 10, 2009 17



Table 3. Number of significantly Overrepresented GO Categories: BD Meta-Analysis Data Set

p < 0.05 p < 0.01 p < 0.001

p Value Criterion for SNPs No. of Top SNPs No. of Genes No. of Categories p Value No. of Categories p Value No. of Categories p Value

0.0001 593 50 21 0.556 6 0.521 2 0.246

0.001 3759 296 61 0.546 17 0.363 3 0.301

0.005 15979 1036 133 0.112 46 0.017 13 0.009

0.01 29073 1698 232 0.001 74 0.001 22 <0.001

Number of GO categories reaching various levels of significance for overrepresentation on the list of significant SNPs in the BD meta-analysis data set and their
corresponding genes, together with p values indicating whether this number is significantly greater than that expected by chance. Only categories containing two
or more significant genes are counted. SNPs assigned to genes if they lie within that gene. Genotyped and imputed SNPs.
CD is worthy of further study. Of further substantial interest

is category 6955 (‘‘immune response’’). This category

contains seven genes with SNPs significant at p < 1 3

10�4 (category-specific p ¼ 0.0002 for overrepresentation).

These genes include NOD2, IL23R (MIM 607562), and

TNFSF15 (MIM 604052), all of which were identified as

putative susceptibility genes for CD in a recent review20

and showed convincing evidence for association in the

meta-analysis.21 The other four genes are SBNO2, CCL18

(MIM 603757), HLA-DQA2, and HLA-DQB2. These, and

other genes in the category, may be interesting additional

candidates for involvement in CD susceptibility.

The analysis method assumes that the probability that

a gene is present on the list of significant genes is indepen-

dent of the presence or absence of other genes in that list—

in other words, that SNPs from different genes are not in

LD. Although this is often a reasonable assumption, there

are regions of the genome in which long-range LD is

known to exist. One of these is the MHC region, located

at chromosome 6p21.3, which is known to be implicated

in autoimmune diseases such as CD. It is possible that

the overrepresentation of significant categories in Table 1

could be due to hits in multiple genes from the MHC

region and that these may be due to LD, rather than to

several different genes being involved in disease etiology.

To investigate this possibility, we reran the analysis, omit-

ting all genes and SNPs in the MHC region, defined25 as the

region between HLA-F (MIM 143110) and KIFC1 (MIM

603763). For a cutoff of p < 1 3 10�4 for defining signifi-

cant SNPs, this resulted in 26 categories reaching a signifi-

cance level of 0.01 for overrepresentation and 15 reaching

a significance level of 0.001. These are both significantly

higher than would be expected by chance (p ¼ 0.032 and

0.003, respectively).

Thus, there is still a significant excess of overrepresented

categories for CD, even after removal of the MHC region,

suggesting that most of the overrepresented categories in

Table 2 do not depend on multiple MHC genes. The

most significantly overrepresented categories after removal

of the MHC region are shown in Table S3. As expected,

categories containing several genes from the MHC region,

such as those involving immunological response or MHC

activity, are no longer significant. Conversely, the promi-
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nence of categories related to ubiquitin (as noted earlier),

as well as to carnitine transport, is enhanced. There is prior

evidence from different sources that suggests that variants

in the carnitine transporter genes SLC22A4 (MIM 604190)

and SLC22A5 (MIM 603377) are associated with CD.26

Using a 20 kb window for assigning SNPs to genes re-

sulted in similar categories being highlighted, although

the significance of the number of overrepresented cate-

gories was reduced (see Table S4).

The number of categories reaching significance levels for

overrepresentation of 0.05, 0.01, and 0.001 in the BD

meta-analysis data set are shown in Table 3. Imputed

SNPs were used, as well as SNPs that were assigned to genes

if they lay within that gene (no window). The significance

of the number of overrepresented categories increased as

less stringent criteria were used in defining significant

SNPs. In particular, the most significant results were ob-

tained with a cutoff of p < 0.01. This suggests that,

compared to CD, the genetic susceptibility to BD (at least

as currently defined) may involve risk alleles with smaller

individual effects.27

Given that this level of stringency resulted in the

maximum enrichment for significant pathways, we used

the threshold of p < 0.01 to examine specific associated

pathways. The results are shown in Table 4, the full list

of which is shown in Table S2. Many of the overrepre-

sented GO categories implicate biological systems involved

in the broad control of cellular activity, including the cate-

gories of hormone activity, RNA splicing, and macroau-

tophagy. Autophagy is a catabolic process that is crucial

to normal cell growth, development, and homeostasis,

and it is known that lithium, the major prophylactic medi-

cation for BD, can induce autophagy.28 Within the cate-

gory of hormone activity, both the genes encoding thyro-

tropin-releasing hormone (TRH [MIM 275120]) and those

encoding thyroglobulin (TG [MIM 188450]) were identi-

fied. Both are involved in thyroid function, which modu-

lates cellular activity, is known to influence mood in

general29 and BD in particular,30 and is influenced by

lithium.31 Also within the category of hormone activity

is the gene encoding proopiomelanocortin preproprotein

(POMC [MIM 176830]), whose protein product, adrenocor-

ticotrophin, is essential for normal functioning of the
9



Table 4. Top 30 Overrepresented GO Categories: BD Meta-Analysis Data Set

GO Category Type

Total
Genes
in Category

No. of
Genes
on List

Expected No.
of Genes on List p Value

Expected Hits
per Study Function

GO05179 FUNCTION 75 10 2.83 0.0000 0.57 hormone activity

GO03700 FUNCTION 692 88 64.03 0.0000 0.57 transcription factor activity

GO16236 PROCESS 7 3 0.24 0.0000 0.57 macroautophagy

GO30212 PROCESS 6 5 0.43 0.0000 0.57 hyaluronan metabolic process

GO00045 PROCESS 6 3 0.24 0.0000 0.57 autophagic vacuole formation

GO03677 FUNCTION 1776 189 148.04 0.0002 0.9 DNA binding

GO03676 FUNCTION 2550 259 215.15 0.0002 0.9 nucleic acid binding

GO33077 PROCESS 6 3 0.25 0.0002 0.9 T cell differentiation in the thymus

GO08380 PROCESS 181 23 10.74 0.0002 0.9 RNA splicing

GO06323 PROCESS 75 12 3.68 0.0002 0.9 DNA packaging

GO42301 FUNCTION 6 3 0.3 0.0002 0.9 phosphate binding

GO06465 PROCESS 7 4 0.6 0.0002 0.9 signal peptide processing

GO04867 FUNCTION 81 17 7.24 0.0004 1.26 serine-type endopeptidase inhibitor activity

GO05102 FUNCTION 572 74 53.92 0.0004 1.26 receptor binding

GO33151 PROCESS 5 3 0.26 0.0004 1.26 V(D)J recombination

GO06623 PROCESS 3 2 0.21 0.0004 1.26 protein targeting to vacuole

GO07034 PROCESS 18 7 1.95 0.0006 1.63 vacuolar transport

GO00398 PROCESS 57 9 2.58 0.0008 2.01 nuclear mRNA splicing, via spliceosome

GO00377 PROCESS 57 9 2.58 0.0008 2.01 RNA splicing, via transesterification
reactions with bulged adenosine as
nucleophile

GO00375 PROCESS 57 9 2.58 0.0008 2.01 RNA splicing, via transesterification reactions

GO30528 FUNCTION 1066 128 101.76 0.0010 2.41 transcription regulator activity

GO18345 PROCESS 4 3 0.3 0.0010 2.41 protein palmitoylation

GO05634 CELLULAR 3617 372 328.82 0.0014 3.22 nucleus

GO44249 PROCESS 602 70 51.32 0.0014 3.22 cellular biosynthetic process

GO02521 PROCESS 51 10 4.06 0.0016 3.6 leukocyte differentiation

GO30098 PROCESS 39 9 3.2 0.0018 4 lymphocyte differentiation

GO05853 CELLULAR 5 2 0.07 0.0018 4 eukaryotic translation elongation factor 1
complex

GO04364 FUNCTION 16 4 0.5 0.0018 4 glutathione transferase activity

GO01958 PROCESS 3 3 0.46 0.0024 5.22 endochondral ossification

GO07076 PROCESS 15 5 1.12 0.0028 6.02 mitotic chromosome condensation

List of 30 most significant GO categories for BD in the BD meta-analysis data set (cutoff for significant SNPs: p < 0.01). Genotyped and imputed SNPs used, with
SNPs assigned to genes if they lie within that gene. The type of category and the expected number of categories with a category-specific overrepresentation p
value at least as significant as that observed in the absence of any true overrepresentation are also shown.
hypothalamic-pituitary-adrenal (HPA) axis, which, like

thyroid function, influences cellular activity. HPA dysfunc-

tion is known to be associated with mood disorders,

including BD.32 Genes implicated within the category of

RNA splicing include several members of the spliceosome

C complex, including small nuclear ribonucleoprotein

200kDa (U5) (SNRNP2000 [MIM 601664]), heterogeneous

nuclear ribonucleoprotein C (HNRPC [MIM 164020]),
Th
mago-nashi homolog (MAGOH [MIM 602603]), pre-

mRNA processing factor 6 homolog (PRPF6), and small

nuclear ribonucleoprotein 40kDa (U5) (SNRNP40 [MIM

607797]). This complex plays a major role in RNA splicing

and, hence, regulation, of cellular activity.33 This category

also includes A2BP1 (MIM 605104), a gene that encodes

ataxin 2 binding protein, which showed a strong associa-

tion signal in a recent GWA study of schizoaffective
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disorder, bipolar type,34 and QKI (MIM 605950), which

encodes quaking homolog, a protein that is important

for normal myelination and is implicated in human

diseases, including schizophrenia.35

The significance of the number of overrepresented cate-

gories ascertained on the basis of the analysis of the LD-

pruned data set, with multiple independent hits per gene

allowed, is given in Table S8, and the 30 most significant

categories, with a cutoff of p < 0.0001 used for defining

significant SNPs, are given in Table S9.

If Table S8 is compared to Table 1, it can be seen that using

a cutoff of p<0.0001 to define significant SNPs still gives the

greatest excess of significantly overrepresented categories

and that this excess has similar significance to that obtained

when all SNPs are used but each gene is counted only once.

The less-stringent cutoffs give less significant excess of over-

represented categories, and these are less significant than

the corresponding values in Table1. Thus, allowing multiple

independent hits per gene does not increase the significance

of the results here. The most significant categories, shown in

Table S9, are also very similar to those in Table 2.

Discussion

We present a novel method for testing for overrepresenta-

tion of biological pathways among significant SNPs from

GWA study data sets. Unlike previous approaches, our

method corrects for varying numbers of SNPs per gene and

multiple overlapping pathways. In addition to providing

a measure of significance (corrected for multiple-testing)

for individual pathways, the method also assesses whether

the number of overrepresented pathways is significantly

higher than expected (given the overlap between path-

ways), thus giving a measure of the overall significance of

the list of associated genes. When applied to GWA data of

CD, a disease with a relatively well-characterized biological

background, the method identified several biological path-

ways known to be implicated in the disease etiology, thus

demonstrating its validity for providing insights into the

biological basis of complex diseases. Moreover, when we

applied themethodtoGWA data fromthe BD meta-analysis,

we identified a number of processes consistent with pre-

vious hypotheses concerning the etiology of this disorder,

although none of those has the degree of prior empirical

support equivalent to that of the involvement of the immu-

nological system in CD. Analyses of additional data sets will

be required for confirmation of which of these specific

pathways are genuinely involved in disease.

The understanding of BD is much less advanced than

that of CD. There are no laboratory tests for BD as of yet,

and diagnoses are based on clinical features.36 To date,

the strongest signals that have emerged from a meta-anal-

ysis of published GWA studies of BD16 have implicated

genes whose products are involved in ion channel activity

(and, hence, control of neuronal excitability), including

ANK3 (MIM 600465) and CACNA1C (MIM 114205). The
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findings from our current analysis (which uses the same

combined data set) implicates several GO categories that

suggest that some aspects of the broad control of cellular

activity may also be important players in the pathogenesis

of BD, including the categories of hormone activity, RNA

splicing, and macroautophagy. At an intuitive level, there

is plausible face validity to the possibility that some aspects

of the broad control of cellular activity could influence the

BD phenotype: BD is an episodic disorder that is affected

by environmental changes, and, at least at a simplistic

explanatory level, both hyper- and hypoenergized states

can occur with reversion to periods of normal function

between acute episodes. It is well known that episodes of

BD can be precipitated by stressors, natural hormonal

changes, and administration of steroid medication,36 and

changes in transcriptional activity are a key mechanism

by which such stimuli interact with genotype to influence

phenotype. If this finding is replicated in other data sets, it

will be important to refine observations to identify (1) the

most important biological systems affected by the general

transcriptional changes and (2) the extent to which the

findings may contribute to the genetic overlap between

schizophrenia and BD.37,38

A limitation of the method is the requirement for specifi-

cation of a p value cutoff in defining the list of significantly

associated SNPs, an approach similar to that taken by

programs, such as GO-stat,39 that analyze lists of genes

(e.g., from microarray expression studies) directly. Clearly,

the choice of this threshold could be arbitrary. Depending

upon the sample size and the distribution of genetic effect

sizes, a relatively stringent cutoff such as p < 0.0001 will

focus attention on SNPs most likely to be genuine associa-

tions; empirically, this worked well for CD. However, for

BD, less stringent cutoffs gave more significant results, in

terms of overrepresented categories, the best results being

obtained with a cutoff of p<0.01. It is likely that the genetic

basis of complex traits will show considerable heteroge-

neity, and this is particularly true for phenotypes such as

BD, of which the diagnosis is entirely clinical and there

are currently no diagnostic tests for validation of classifica-

tion.37 Most associations with individual SNPs will have

a small effect size in the sample as a whole. Thus, one of

the major aims of pathway-based analyses is detection of

pathways in which several genes show moderate associa-

tion individually. This rationale would argue for the use of

a less stringent p value criterion for selection of the list of

significant SNPs. Clearly, there is a balance to be struck

between being confident that the associations tested are

genuine, which is greatest when a stringent cutoff is used

in defining significant SNPs, and ensuring that genuine

associations of small magnitude are not missed. It is likely

that the optimal cutoff will depend on the disease. A prag-

matic solution to the problem of choosing an arbitrary

threshold, a solution that we adopt here, is to apply a range

of cutoffs, determine which gives the most significant

increase in overrepresented categories, and examine the

individual categories highlighted by this cutoff.
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The results for the BD meta-analysis were much more

significant than those that would have been obtained

from analyzing the WTCCC BD sample alone (results

shown in Table S5), highlighting the importance of using

large sample sizes to give high power to detect associations

of small magnitude.

Several promising methods have recently been devel-

oped for imputing genotypes at untyped SNPs with the

use of the genotyped SNPs and the Hapmap data.40 We ex-

pected that the use of imputed SNPs might increase power

of the method, because more genes would become infor-

mative. Our analysis of the BD meta-analysis data co-

nfirmed that this hypothesis was correct (results obtained

when genotype data was used alone are in Table S6).

Another issue that is applicable to any method based

upon genes concerns how the boundaries of genes are

defined. We used two options. First, SNPs were assigned to

genes only if they lay within the start of the first and the

end of the last known exon. In the second approach, SNPs

mapping within 20 kb of a gene (50 or 30) were assigned to

that gene. When the optimal cutoff for selecting significant

SNPs (p < 0.01) was used, we observed no apparent

improvement in the results by using the latter approach

(see Table S7), which was designed to capture the proximal

functional elements of most genes. The choice of 20 kb is

not entirely arbitrary—a recent study of gene expression41

found that the majority of eQTLs lay within 20 kb of genes.

However, other window sizes are also justifiable; for

example, a 500 kb window has been used.11 Again, there

is a balance to be struck between narrow windows (running

the risk of missing regulatory regions) and wide regions

(increasing the chance that an associated SNP has no func-

tional relationship with the gene to which it is assigned).

It is possible to reduce the multiple-testing burden by re-

stricting analysis to a subset of GO categories; for example,

GO level 4 categories containing between 20 and 200

genes.11 Alternatively, a partitioning method42 could be

used for selection of informative subsets of categories for

analysis. However, for a disease such as BD, for which

previousbiological information is limited, there isnoapriori

indication of which size or level of category will best reflect

the underlying biological processes. Thus, selecting any

subset of categories for analysis risks the loss of information.

Because the aim of our study was to investigate what the

GWA results could tell us about the biological basis of BD,

while making as few assumptions as possible, we chose to

analyze all GO categories. Although our results must neces-

sarily be regarded as exploratory and do require replication

in other studies, it should be noted that we did observe an

experiment-wide excess of significantly overrepresented

categories even after correcting for multiple categories.

A limitation of our method is that it counts each gene only

once. If a gene contains multiple independent hits, it is

possible that counting each of these separately could

increase the power of the study. We investigated this in

the CD data by selecting a subset of 61,246 SNPs in low LD

(r2 < 0.2) lying within genes. Each significant SNP in a GO
Th
category was counted separately, and significance of over-

representation was tested by generating random lists of

‘‘significant’’ SNPs of the same length as the original. This

did not increase the significance of the results, nor did it alter

the most significant GO categories (see Tables S8 and S9).

One reason for this might be that the subset of SNPs covered

fewer genes than the original SNP set (12,899 to 14,653), so

potentially important genes might have been ‘‘lost.’’ It is

possible that counting significant SNPs in low LD separately

may increase power for some diseases, particularly if a rela-

tively lax cutoff is used in defining significance (because

this makes multiple independent signals more likely).

However, such SNPs may not be truly independent (depen-

dent on the r2 cutoff), so analyzing them as independent

may cause false-positive results. Using a stricter r2 cutoff

will reduce this possibility, but it may result in a loss of power

due to decreased gene coverage. SNP selection strategies that

maximize power merit further work.

An alternative method for testing for overrepresentation

of pathways among significant SNPs from GWA studies is

given by Wang et al.11 Their method involves ranking all

genes in order of significance (based on association-test

statistics for individual SNPs), then comparing the distribu-

tion of ranks of genes in a particular pathway to the remain-

ing genes via a Kolmogorov-Smirnov test. This test can be

modified to take into account the actual test statistics asso-

ciated with the genes, with higher weights assigned to more

significant genes. This is a modification of the method used

by the program GSEA.43 This approach has the advantage of

not requiring a criterion for significant SNPs, and genes, to

be specified, because it is based on the distribution of ranks

in the whole set of genes. However, the Kolmogorov-Smir-

nov test does not take into account where in the overall

distribution the differences in ranks lie. Thus, a significant

result could be based on differences in rank occurring

among genes some way down the list, with nonsignificant

p values for association. Such a result would be of limited

interest. Conversely, the weighting scheme used by Wang

et al.11 favors pathways in which a few genes have very large

test statistics in comparison to the others over pathways

with several genes of approximately similar significance.

As noted above, the aim of pathway analysis is, at least argu-

ably, to detect the latter sort of pathway, given that genes

with very large test statistics will be apparent from inspec-

tion of the individual SNP p values. Perhaps a useful

compromise between these extremes would be to define

a list of SNPs, and thus genes, of interest, as in the method

proposed here, but to assign each gene a score based on its

rank within the list. For example, if the list has n genes,

assign the most significant a score of n, the next a score of

n � 1, and so on. Genes not on the list would be assigned

a score of zero. A score for each pathway could then be ob-

tained by summing the scores of its genes, and the signifi-

cance of the pathway score could be tested in a manner

similar to that described here.

As noted by Wang et al.,11 ranking genes on the basis of

the most significant SNP within each gene favors large
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genes with several SNPs, and any analysis of the signifi-

cance must allow for this. Ideally, one would reanalyze

the entire genome, permuting case and control status, to

obtain sets of ranked genes to which the observed results

can be compared. Such a method allows for varying sizes

and LD structure among genes, but it is computationally

demanding, particularly if imputed data are used. Further-

more, permutation requires individual genotype data to be

available. Therefore, a single p value is assigned to each

gene by Wang et al.,11 and these are permuted randomly

among all genes. Two methods are proposed for obtaining

a single p value for each gene: (1) using the most signifi-

cant p value and (2) applying a Simes correction to the

p values from that gene and using the corrected p value

in the analysis. Using the most significant p value will

increase the chance that large genes with several SNPs

rank highly by chance, and thus it may falsely inflate

the significance of pathways that contain such genes. Co-

nversely, the Simes correction will be very conservative for

large genes containing only a few highly significant SNPs,

particularly if the analysis method for overrepresentation

uses the actual p value (as does the method used by

Wang et al.11) rather than just presence on a list of signif-

icant genes. Furthermore, applying the Simes correction

may alter the order of genes from that in the original

data, which may be undesirable when rank-based methods

are being used. Our method allows for the varying sizes of

genes by a random selection of SNPs for generation of the

replicate gene lists against which the observed data are

tested. Thus, the probability that a gene is added to the

list is proportional to the number of SNPs that it contains.

This assumes that SNPs in different genes are not in LD, so

the position of a gene on the list does not depend on that

of nearby genes. Regions of the genome that are known to

show long-range LD, such as the MHC region, will violate

this assumption. Reanalyzing the data, omitting SNPs and

genes within these regions, provides a means of checking

that significant overrepresentation of GO categories is not

solely a result of a few genes being in LD with each other.

When the MHC region was removed, the significance of

GO categories containing several MHC genes (such as

those involving immunological response or MHC activity)

was reduced, removing them from the list of significant

categories in Table S3. This does not necessarily mean

that the significantly overrepresented MHC-related cate-

gories observed in Table 2 are false positives, since multiple

hits from the MHC region could still be independent.

Indeed, the fact that the MHC-activity- and immunolog-

ical-response-related categories were the most significant

when the LD-pruned SNP set was used (see Table S9)

suggests that multiple hits from the MHC region are not

in strong LD with each other. Careful examination of

the LD patterns between significant SNPs would be

required for assessment of whether the multiple signifi-

cant genes in the MHC region could result from the

same association signal or represent multiple distinct

signals.
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An additional assumption of our method is that LD

within genes is approximately constant (so that the effec-

tive number of tests per gene is roughly proportional to

the number of SNPs), but when that assumption is

violated, such as in regions of high LD, our analysis will

be conservative. It is difficult to fully allow for variable

LD levels without resorting to simulation-based methods

(for which the full genotype data are required). The SNP-

pruning approach mentioned above is a possibility, but it

needs further evaluation. It should be noted, however,

that our method is only an initial stage in highlighting

interesting genes and pathways for further study and

that issues of inter-SNP LD will need to be resolved by

more detailed analyses of individual genotype data.

In summary, we detail a method for implicating biological

pathways likely to be involved in disease susceptibility. In

a proof-of-principle application, we correctly identified

pathways known or suspected to be involved in CD. When

applied to BD, a disorder whose pathophysiology is almost

entirelyunknown, the results suggest that biological systems

involved in modulation of transcription and cellular activity

are implicated, as is hormonal function, including thyroid

hormone. These observations suggest that a core feature of

pathogenesis of BD may be a disturbance in regulation of

transcriptional activity. Although intriguing, these results

need to be replicated in additional large studies.

Supplemental Data

Supplemental Data include a complete list of WTCCC members

and nine tables and can be found with this article online at

http://www.ajhg.org/.
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Web Resources

The URLs for data presented herein are as follows:

AmiGO database, http://www.geneontology.org/GO.downloads.

ontology.shtml

Computer programs and files for carrying out the analyses

described in this manuscript, http://x004.psycm.uwcm.ac.uk/

~peter
9

http://www.ajhg.org/
http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.geneontology.org/GO.downloads.ontology.shtml
http://x004.psycm.uwcm.ac.uk/~peter
http://x004.psycm.uwcm.ac.uk/~peter


Gene Ontology Annotation (GOA) database, http://www.ebi.ac.

uk/GOA

NCBI, http://www.ncbi.nlm.nih.gov

NCBI ftp site, http://www.ncbi.nlm.nih.gov/ftp

NCBI SNP batch entry list, http://www.ncbi.nlm.nih.gov/SNP/

dbSNP.cgi?list¼rslist

NCBI chr_rpts download site, ftp://ftp.ncbi.nih.gov/snp/

organisms/human_9606/chr_rpts/

NCBI detailed information on chr_rpts file, ftp://ftp.ncbi.nih.gov/

snp/00readme.txt

NCBI seq_gene download site, ftp://ftp.ncbi.nih.gov/genomes/

H_sapiens/mapview/

NCBI gene2go file download site, ftp://ftp.ncbi.nih.gov/gene/

DATA

NCBI Detailed information on gene2go file, ftp://ftp.ncbi.nih.

gov/gene/README

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/omim/

Wellcome Trust Case-Control Consortium website, https://www.

wtccc.org.uk/
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